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INTRODUCTION 
The conversion of low-rank coal t o  l iquid products has  t rad i t iona l ly  been 

performed i n  organic donor solvents a t  constant reactor temperatures. In one 
view of coal l iquefaction, the thermolysis of weak bonds in the coal s t ruc ture  
i s  followed by H t r ans fe r  t o  the coal-derived radicals by hydrogenation atom 
donor molecules, reactions 1. and 2. To minimize adduction and  allow organic 

1 - coal-coal + 2R' 

2 - 2R' + 2H-Donor + 2RH + 2'Donor 

materials to  en ter  the product stream, we have recently developed a new donor 
solvent, H20-H2S w i t h  CO and H 2 ,  as a subs t i tu te  fo r  the organic slurrying 
solvent (1.2) and reducing gases. For ZAP l i gn i t e ,  vo la t i l e  product conversion 
f o r  the reaction performed i n  H20-H2S-H2-CO a t  420°C i s  42.8%; and, f o r  
H20-H2-CO, i t  is 37.4% (1). Our  current research in to  the chemistry of 
l iquefaction has yielded considerable progress using the l inear  temperature 
programmed reactions, 300-500°C. The conversion to  vo la t i l e  products us ing  by 
H20-H2S-H2-CO is equal 59.3% (3). 

A number of investigators have applied ESR to  examine radicals formed 
during pyrolysis of coal (4-11). Since the method of electron resonance is a 
very sensit ive,  we have chosen t h i s  technique t o  investigate mutual 
interactions of coal-derived radicals w i t h  reducing gases. 

EXPERIMENTAL 
About 30-50 mg 

of l i gn i t e  sample was inserted i n  a 2 mm i.d. Pyrex tube together with 20-30 mg 
of glass wool. The samples were dried i n  vacuum 1 Torr a t  5OoC fo r  3 hrs. The 
liquefaction was performed under reducing gases using the l inear  programed 
temperature range of 30U-5OO0C over the period of 1 hr i n  the batch autoclaves. 

The ZAP l i gn i t e  (Table 1) was ground t o  less  than 37 urn. 
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When t h e  temperature 500°C was reached, the  reactors  were vented t o  remove o i l  
and gas, cooled down i n  water (20'C) and next  i n  i c e . .  The samples were 

immediately sealed under argon, and the  ESR measurements were c a r r i e d  out  
w i t h i n  10-15 min a t  room temperature. According t o  Pe t rak i s  (E), upon cool ing 

t o  room temperature, sp in  concentrat ions i n  coal are, i n  general,  t h e  same as 
a t  t h e  h igh  temperature. The s p i n  concentrat ions and g values were determined 
by t h e  sample in terchange method. DPPH was employed as t h e  standard. Spin 

concentrat ions were ca l cu la ted  on f i n a l  and i n i t i a l  amounts o f  l i g n i t e .  The 
sp in  concentrat ion ( S C )  data was employed t o  c a l c u l a t e  t h e  conversion t o  

d i s t i l l a t e  products by us ing  the equation 3. The ca l cu la ted  conversion (SC) 

SC(f ina1) - SC( in i t i a1 )  
3 - % conversion (SC) = x 100% 

W f i n a l )  

has been c o r r e l a t e d  w i t h  s i m i l a r  conversion values i n t o  v o l a t i l e  products 
independently determined by employing the  t r a d i t i o n a l  techniques (1). 

A l l  ESR spect ra were recorded us ing  a Brucker ER-420 spectrometer. 
Dup l i ca te  samples were prepared f o r  a l l  d i f f e r e n t  sets  o f  l i q u e f a c t i o n  
cond i t i ons  t o  check r e p r o d u c i b i l i t y .  

RESULTS AND DISCUSSION 

(a )  The e f f e c t  o f  H,S on s t a b i l i z a t i o n  o f  coal -der ived r a d i c a l s  
The t y p i c a l  ESR spectrum o f  a ZAP l i g n i t e  sample i s  a s i n g l e  symmetric 

s igna l  w i thou t  hyper f i ne  s t r u c t u r e  (F igure 1). This s ignal  i s  d i s t i ngu ishab le  

by i t ' s  g-value, l i n e w i d t h  and sp ins g-'. For unreacted coal, they are 2.0021, 
8.3 G and 1.8 x lo1' sp ins g- , and f o r  pyro lyzed coal l i n e a r  programmed over 
30O-50O0C fo r  1 hr ,  t he  values a r e  2.0011, 6.8 G and 20.2 f 1.9 x 10'' g spins 
g , respect ive ly .  Decreases i n  ESR g value i s  known t o  be a consequence o f  
t he  evo lu t i on  of heteroatom-containing gases such as C02 and H20 which are 

formed dur ing t h e  pyro lyses (13). The decrease i n  l i n e w i d t h  o f  t he  sample can 
be a t t r i b u t e d  t o  the  dehydrogenation react ions known t o  be occurr ing 

concurrently. 

1 

-1 

A rep resen ta t i ve  spectrum of ZAP l i g n i t e  which has been reacted w i t h  H2S 
i s  reproduced i n  F igure 2. Th i s  spectrum consis ts  o f  two symmetric signals: 
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one i s  p o s i t i v e  (+) and one i s  negat ive (-). The p o s i t i v e  s igna l  can be 

a t t r i b u t e d  t o  coal -der ived and some organo-sulfur rad i ca l s .  I t  i s  c lose t o  

Lorentz ian i n  shape. The observed negat ive curve has a Gaussian shape, and it 

represents r a d i c a l s  assoc iated a v a r i e t y  o f ,  organo-sul fur  bonds. The 
ex is tence o f  t h e  nega t i ve  s igna l  suggests an a l t e r e d  magnetic environment o f  

these unpai red e lec t rons .  

More recent  measurements o f  t he  33S hyperf ine s t r u c t u r e  have revealed 
three b a s i c  forms o f  s u l f i d e  rad i ca l s :  RCH2S', RCH2SS' and (RCH2SSCH2)- (14). 
The g tensor ,  which has proven t o  be w ide ly  app l i cab le  f o r  i d e n t i f i c a t i o n  of 
su l fur -centered r a d i c a l s ,  does no t  prov ide a c r i t i c a l  d i s t i n c t i o n  between the 

monosulf ide and d i s u l f i d e  forms o f  these rad ica ls .  There seems t o  be agreement 

(15) t h a t  t h e  d i s u l f i d e  r a d i c a l  anion forms from RS' by reac t i on  4. The 

unpaired e l e c t r o n  i s  weakly bounded t o  t h e  S:S a3p* ant ibonding molecular 

o r b i t a l  s ince  i t  conta ins a major 3p+3p element. The d i s u l f i d e  r a d i c a l  anions 
can be protonated (16) t o  g i ve  I. 

RC? i 
sws 

\ 
CH2R 

I 

Th is  molecule s t i l l  has t h e  unpaired e l e c t r o n  i n  t h e  S'S u ~ ~ *  o r b i t a l .  The S-S 
bond w i l l  probably be weaker than t h a t  o f  t he  anio'n. 

I n  t h i s  system, one can expect t h e  d i f f us ion  o f  H2S inward i n  t h e  coal 
p a r t i c l e  du r ing  t h e  heating. This may cause product ion severa l  k inds  o f  

organo-sulfur bonds which can vary with d i f f e r e n t  concentrat ion o f  H2S. It i s  
reasonable t o  assume t h a t  charged organo-d isu l f ide r a d i c a l s  can be a lso f o r m d  
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i n  t h e  i n t e r i o r  o f  c o a l ' s  g r a i n  and be d i s t r i b u t e d  as paramagnetic impur i t i es  
p a r t l y  s t a b i l i z e d  by environment. 

By computer ana lys i s  o f  the spectra, i t  was poss ib le  t o  separate 
experimental ESR curve i n t o  two component spectra. The p o s i t i v e  one belongs 
p r i m a r i l y  t o  coal -der ived r a d i c a l s  ( p o s i t i v e )  and t h e  o the r  t o  organo-disulfur 
rad ica ls .  

The r e l a t i o n s h i p  o f  sp in  concentrat ions per  gram t o  the  pressure o f  H2S i s  
shown i n  F igure 3. The l i n e s  assigned as I and I1 were determined by the  
d i v i s i o n  o f  t he  sp in  concentrat ion values by t h e  amount of charged l i g n i t e  and 

recovered s o l i d  m a t e r i a l  from the  reac to r ,  respect ive ly .  There i s  a 
s i g n i f i c a n t  r i s e  o f  sp in  densi ty  w i t h  increas ing concentrat ions of 'H2S. The 

d i f f e rences  i n  sp in  concentrat ions between t h e  two p l o t s  I and I 1  represents 

the amount o f  coal -der ived r a d i c a l s  which have been converted t o  o i l  and gas. 
The l i n e  described as theo re t i ca l  has been ca l cu la ted  from t h e  computer 
separated s ignals ,  and represents the t o t a l  number of rad i ca l s .  

The v a r i a t i o n  of g-value w i t h  pressure o f  H2S i s  presented i n  Figure 4. 
The g values increase s i g n i f i c a n t l y  w i t h  H2S pressure. It i s  r e l a t e d  t o  the 
amount o f  heteroatoms incorporated (23). Thiophenol i c  forms l i k e  phenolic 
forms a re  e f f e c t i v e  a t  causing g - s h i f t s  (11). 

F igure 5 shows t h e  v a r i a t i o n  o f  t he  ESR l i n e  w id th  ( A H  ) as a func t i on  o f  
H2S pressure. Overa l l  the p r i n c i p a l  c o n t r i b u t o r  t o  t h e  p o s i t i v e  s ignal  i s  
coal-derived rad i ca l s ,   AH^^ r 5 G and f o r  s igna l  ( - )  some k ind  o f  
organo-disulfur compounds AH > 15 G. The r e s u l t s  i n d i c a t e  t h a t  hydrogen 
content i n  t h e  coal  r a d i c a l s  i s  unchanged w i t h  pressure o f  H2S. For 
organo-disulfur compounds, t h e  l i new id ths  f a l l  w i t h i n  the  range 14.1-16.6 G 

w i t h  increas ing o f  H2S pressure. Th is  suggests t h a t  o t h e r  e f f e c t s  may a l so  
i n f l uence  on t h e  ESR l i n e w i d t h  such as e lect ron-proton i n t e r a c t i o n s  (13). 

PP 

PP 

It i s  wor thwhi le  t o  note t h a t  negat ive ESR s igna l  disappears when 
p rev ious l y  s u l f u r i z e d  ZAP l i g n i t e  i s  exposed t o  H2 o r  CO atmospheres a t  500°C. 
The g-values and l i n e w i d t h s  concomitantly decrease t o  2.0016 and 5.8 G, 
respect ive ly .  
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(b) E f f e c t  of H,S and H, (CO) on hydrogenation o f  coal-derived rad ica ls .  
I n  H2S-H2 o r  H2S-CO atmospheres s i g n i f i c a n t  dif ferqnces occur i n  ESR 

spectra o f  ZAP l i g n i t e  programed 300-5OO0C (F igure 6). The l i n e  shape va r ies  

and i s  cha rac te r i zed  by t h e  disappearance o f  t he  negat ive signal (Figure 2 )  and 

t h e  appearance o f  a narrow peak wi th a s h o r t  w id th  o f  l i n e  ~r 1 G. The spin 

concentrat ion i n  H2S-CO atmosphere i s  lower  than i n  H2S-H2 (Figure 7). 
Therefore, CO decreases t h e  p r o b a b i l i t y  o f  t h e  carbon s u l f u r  bonds formation. 

L 

The g va lues o f  t h e  ZAP l i g n i t e  i n  H2S-CO a l s o  changes upon the 

i n t r o d u c t i o n  o f  H2 p a r t i c u l a r l y  a t  lower pressures o f  H2S (Figure 8). I n  the 

h ighe r  f r a c t i o n a l  pressure o f  CO (= 0.7) i n  t h e  m ix tu re  o f  H2S + CO there 

appears, f i r s t  o f  a l l ,  t o  be CO i n t e r a c t i o n  wi th coal rad ica ls .  This i s  mostly 
pronounced i n  r e a c t i o n  CO alone w i t h  coal r a d i c a l s  (Table I ) ,  g = 2.0026 and 

suggest s t r o n g  s p i n - o r b i t  coupling, probably w i t h  phenoxy groups o r  those of 
t h e  semiquinone type. 

( c )  E f f e c t  o f  wa te r  on f r e e  rad i ca l s  format ion and l i g n i t e  conversion. 
The r e s u l t s  o f  the ESR measurements w i t h  water and reactant  gases (CO. 

H2S, H2) are  l i s t e d  i n  Table 1. I n  a l l  experiments w i t h  H20, t he  rad i ca l  

concentrat ions o f  ZAP l i g n i t e  i s  low consider ing the  very l a rge  numbers o f  
rad i ca l s  known t o  be formed du r ing  p y r o l y s i s  ( Z  20.2 x lo1’ 9- l ) .  The 

determined convers ion t o  v o l a t i l e  products i s  va r ied  w i t h  d i f f e r e n t  pressure o f  

CO. The maximum convers ion was achieved most ly  i n  CO = 70 MPa + n2S = 17.5 

MPa. Th is  suggests t h a t  many o f  formed r a d i c a l s  were consumed by hydrogen 
t rans fe r  f rom s h i f t  react ion,  H20 + CO, s h i f t  r eac t i on  promoted by H2S 
throughout COS i n te rmed ia te  compounds and as o i l  ex t rac ted  by s u p e r c r i t i c a l  
water o r  p a r t l y  evaporated t o  reac to r  were removed du r ing  v e n t i l a t i o n  process. 

The very narrow l i n e w i d t h  was noted f o r  reac t i ons  performed w i t h  H20 and 
reactant  gases. Using t h e  r e l a t i o n  between ESR spect ra l  l i new id th  and hydrogen 
content  o f  coals  developed by Retcofsky (29), AH = 1.6 H - 1.8 where H i s  

weight  pe rcen t  hydrogen, we can conclude t h a t  t h e  hydrogen content i n  the 
n o n v o l a t i l e  res idue  i s  decreased. 

PP 
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SUMMARY 
To increase t h e  l i q u i d  y i e l d s  o f  coal l i que fac t i on ,  ESR spect ra o f  

unconverted coal residues a re  r e l a t e d  t o  reac to r  cond i t i ons  and conversion i n t o  

v o l a t i l e  products. ESR spectra were obtained f o r  Nor th Dakota Zap l i g n i t e  
t rea ted  w i t h  var ious reducing gas atmospheres us ing a 1 inear-programed reac to r  

temperature range o f  300-500°C. The l i n e  shape, sp in  density, l i n e w i d t h  and 
g-values were a l l  found t o  vary w i t h  t h e  nature o f  t h e  reducing gases employed. 

The sp in  dens i t y  o f  t h e  coal samples increased w i t h  increas ing concentrat ions 
of H2S i n  the reactor .  P a r t i a l l y  superimposed p o s i t i v e  and negat ive s igna ls  

were recorded when t h e  coal was reacted w i t h  H2S alone. When H2S i s  used i n  
conjunct ion w i t h  e i t h e r  H2 o r  CO, o n l y  two p o s i t i v e  s igna ls  were observed i n  
the  ESR spectra and t h e  sp in  d e n s i t i e s  were reduced. The sp in  dens i t y  o f  t h e  
reacted coal  was minimum when t h e  reac t i on  mixture contained H2@. The s p i n  

densi ty  o f  the samples were i n v e r s e l y  r e l a t e d  t o  t h e  percent conversion i n t o  
v o l a t i l e  products. 
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Figure 6. ESR spectrum o f  ZAP l i g n i t e  a f te r  

reac t ion  with H p l ?  at  l i n e a r  programled 

temperature, 300-500°C. 
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